Intel® Xeon Phi™ Coprocessors

Intel® Xeon Phi™ Coprocessors

What is the Intel® Xeon Phi™ coprocessor?
Intel® Xeon Phi™ coprocessors are PCI Express* form factor add-in cards that work synergistically with Intel® Xeon® processors to enable dramatic performance gains for highly parallel code—up to 1.2 double-precision teraFLOPS (floating point operations per second) per coprocessor.

Manufactured using Intel’s industry-leading 22nm technology with 3-D Tri-Gate transistors, each coprocessor features more cores, more threads, and wider vector execution units than an Intel Xeon processor. The high degree of parallelism compensates for the lower speed of each core to deliver higher aggregate performance for highly parallel workloads.

What applications can benefit from the Intel Xeon Phi coprocessor?
While a majority of applications (80 to 90 percent) will continue to achieve maximum performance on Intel Xeon processors, certain highly parallel applications will benefit dramatically by using Intel Xeon Phi coprocessors. To take full advantage of Intel Xeon Phi coprocessors, an application must scale well to over 100 software threads and either make extensive use of vectors or efficiently use more local memory bandwidth than is available on an Intel Xeon processor. Examples of segments with highly parallel applications include: animation, energy, finance, life sciences, manufacturing, medical, public sector, weather, and more. Learn more about Intel® Many Integrated Core Architecture (Intel® MIC Architecture) development.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.